Description of Courses in Medical Physics

    Required and major elective courses for graduate students in Medical Physics

    Course Number Course Description
    MPHY
    34200
    Practicum in the Physics of Medical Imaging I
    This laboratory course is designed to familiarize the medical physics student with typical diagnostic x-ray generators and digital image receptors, including the measurement of their properties and performance parameters, and conduct basic MR-imaging experiments. In addition, students will also experiment with computer-aided diagnosis. (Jiang, Karczmar, Roman, La Riviere, Suzuki)
    MPHY 34300 Practicum in the Physics of Medical Imaging II
    This laboratory course is designed to familiarize the medical physics student with certain equipment and procedures in diagnostic radiology, with emphasis on nuclear medicine (both PET and SPECT), ultrasonic and x-ray (helical) computed tomographic (CT) imaging. The students will conduct routine quality control procedures and educational exercises. Data analysis will be conducted using clinical software and freeware that will process DICOM images (O’Brien-Penney and LaRiviere)
    MPHY 34900 Mathematics for Medical Physics
    This course focuses on the mathematics that will be used throughout the training of the student in the Graduate Programs in Medical Physics. Lectures are given on linear algebra, Fourier analysis, sampling theory, functions of random variables, stochastic processes, estimation theory, signal detection theory, and ROC analysis (Giger, Metz, Pan)
    MPHY 35000 Interactions of Ionizing Radiation with Matter
    Ionizing radiation is the basis for radiation therapy and for many diagnostic imaging studies. This course explores the fundamental modes of interaction between ionizing radiation (both electromagnetic and particulate) and matter, with an emphasis on the physics of energy absorption in medical applications. Topics will include exponential attenuation, x-ray production, charged particle equilibrium, cavity theory, dosimetry, and ionization chambers. (Armato, Al-Hallaq)
    MPHY 35100 Physics of Radiation Therapy
    This course covers aspects of radiation physics necessary for understanding modern radiation therapy. Rigorous theoretical foundations of physical dose calculation for megavoltage energy photons and electrons, biological predictions of therapy outcomes, and brachytherapy are presented. Methods of modeling and implementing radiation therapy treatment planning, evaluation, and delivery are described. Emphasis is placed on current developments in the field including intensity modulated radiation therapy. The course is intended to provide comprehensive knowledge of radiation therapy physics enabling the student to grasp current research in the field. (Yenice and Staff)
    MPHY 35601 Anatomical Structure and Physiological Function of the Human Body
    Study of the basic anatomy of the human body as demonstrated from cadavers and correlating diagnostic radiographic imaging. Physiological processes of body systems will be examined with an emphasis on its relationship with imaging. (Primarily for medical physics graduate students, but all non-medical graduate students are welcome)
    MPHY 35900 Cancer and Radiation Biology
    This course provides students with an overview of the biology of cancer and of the current methods used to diagnose and treat the disease. Lectures from faculty throughout the Biological Sciences Division will include presentations on cancer incidence and mortality, cancer prevention, a molecular biology perspective, the role of genetic markers, methods of treatment (radiation, chemotherapy) and prognosis. The course will be primarily for medical physics graduate students. (Grdina and Staff)
    MPHY 38600 Physics of Medical Imaging I
    This is an introductory course to the basic elements of x-ray imaging, electron paramagnetic resonance (EPR) imaging, and magnetic resonance imaging (MRI) and spectroscopy (MRS). Topics covered on x-ray imaging include x-ray spectra, image formation, analog and digital detectors, physical measures of image quality, fluoroscopy, digital subtraction angiography, dual-energy imaging and image restoration. Topics covered on magnetic resonance imaging include nuclear magnetic resonance, relaxation times, pulse sequences, functional imaging and spectroscopy. (Nishikawa and Staff)
    MPHY 38700 Physics of Medical Imaging II
    This course covers the physics, mathematics and statistics in nuclear medicine, x-ray computed tomography, ultrasound imaging, and optical imaging. Specific topics include: Radioactive Isotopes and Tracer Methodology; Physics, Instrumentation, and Performance Properties of Gamma Camera; Quality Control in Nuclear Medicine; SPECT imaging; Physics, Instrumentation and Performance Properties of PET Imaging; Biokinetics and Compartmental Analysis; Physics, Reconstruction, Proformance Properties for CT imaging and tomosynthesis; Principle and Instrumentation of Ultrasound Imaging; and Introduction to Optical Imaging. (Kao and Staff)
    MPHY 39100 Physics of Mammography
    This is an advanced course designed to give students an in-depth understanding of the application of basic medical physics concepts and principles to the problem of breast cancer detection using mammography. Topics include radiographic properties of breast tissue; image quality requirements for breast imaging; relationship between x-ray equipment and image quality; dosimetry; risk/benefit analysis as applied to screening; digital mammography. (Nishikawa and Staff)
    MPHY 39200 Diagnostic Clinical Physics
    This course will provide the basics of diagnostic clinical physics. Pertinent regulations and accreditation requirements will be reviewed. The need for quality control (QC) policies, procedures, and protocols will be discussed and examples given. Certification and "maintenance of certification" requirements for clinical physicists will be presented. Site planning, acceptance testing, and periodic physicist surveys will be presented and discussed. Required QC tests will be presented for each imaging modality and then conducted in the clinical setting. Pre-requisites: Successful completion of first year graduate courses within the Medical Physics Graduate Program. (Drs. O'Brien-Penney and Sammet)
    MPHY 39300 Physics in Clinical PET
    This course is designed to provide in-depth exposure to the clinical physics of positron emission tomography (PET). It focuses on PET technology and PET applications. Students learn about PET instrumentation, cyclotrons, PET radiotracers and their regulatory environment, procedures for calibration of PET systems, quality assurance programs, major PET protocols, and data and image analysis methods. (O'Brien-Penney and Staff)
    MPHY 39500 Physics in Clinical SPECT
    This course provides students with exposure to single photon emission computed tomography (SPECT) in the clinical setting. The protocols used for all common SPECT exams will be reviewed. Trade-offs between different modes of data acquisition and processing will be presented. Quality control procedures and interpreting their results will be reviewed. Procedures needed to obtain quantitative SPECT results will be presented. Cardiac gated SPECT will be explained, as well as the special displays (e.g. polar plots) used in cardiac SPECT interpretation. The use of attenuation correction, scatter correction, and SPECT/CT will be presented. (O'Brien-Penney and Staff)
    MPHY 39600 Image Processing and Computer Vision
    Introduction to the fundamental concepts and techniques widely used for processing and understanding digital images. The course will consist of a series of lectures and with "student projects to provide hands-on experience in various image processing techniques. Topics include: digital image properties, data structures for image analysis, image filtering (smoothing, edge detection, noise reduction), segmentation (region growing, mathematical morphology), feature extraction (histogram analysis, shape description), texture analysis (co-occurrence matrices, texture energy measures, fractals), pattern recognition (discriminant analysis, statistical pattern recognition, neural networks), and linear transforms (Fourier, discrete cosine, Hough, and wavelet transforms). (Armato and Suzuki)
    MPHY 39700 Health Physics
    This course provides an introduction to fundamental principles of health physics and radiation protection in wide-ranging medical physics environments. A broad spectrum of topics covered in this course includes but not limited to radiation detection and measurement, instrumentation, counting statistics, radiation protection criteria, exposure limits and regulations, shielding techniques, monitoring of personnel dose and radiation safety. (Bulent and Ozturk)
    MPHY 39900 Reading and Research
    This reading course is aimed at working through critical chapters of the text "Foundations of Image Science" by Harrison Barrett and Kyle Myers. It aims at building on concepts and material from the "Mathematics for Medical Physicists" course toward a deeper understanding the objective assessment of image quality. We will focus on Chapters 1 (Vectors and Operators), 7 (Deterministic Descriptions of Imaging Systems), 8 (Stochastic Descriptions of Objects and Images), 13 (Statistical Decision Theory), 14 (Image Quality), and 15 (Inverse Problems). Student participation is an essential component of this course. Students will take turns presenting and discussing the material under guidance of the instructor(s). There will also be computer exercises aimed at sharpening understanding of the material. (LaRivere and Kao)
    MPHY 41700 Research in Medical Physics
    Research topics span various areas of medical physics and can include those from diagnostic imaging to radiation therapy treatment methods, as well as cross-disciplinary projects. (Giger and Staff)
    MPHY 41800 Research in Advanced Tomographic Imaging
    Possible research topics include investigation, development, and evaluation of algorithms for advanced tomographic imaging, with emphases on the fundamental physics, mathematics, and statistics areas of advanced tomographic imaging. Possible tomographic imaging techniques will be covered include cone-beam computed tomography (CT), tomosynthesis, phase-contrast CT, magnetic resonance imaging (MRI), electron paramagnetic resonance imaging (EPRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and emerging tomographic imaging techniques. (Pan and Staff)
    MPHY 42000 Research in the Physics of Nuclear Medicine
    Possible research topics cover the fundamental physical aspects of nuclear medicine, including radiation detection and spectrum analysis; image formation, processing, and display; criteria for image evaluation; and quantitative in vivo assay using methods of gamma ray and positron tomography, stimulated x-ray fluorescence, and activation analysis. (Chen, Pan, Kao, La Riviere)
    MPHY 42100 Research in the Physics of Diagnostic Radiology
    Possible research topics include the development of methods to improve diagnostic accuracy and/or to reduce patient radiation exposure; quantitative image analysis and computer-aided diagnosis, methods of tomographic reconstruction, analysis and evaluation of imaging system components; and joint physical/clinical studies of new techniques in diagnostic Medical Physics. (Giger and Staff)
    MPHY 42200 Research Physics of Radiation Therapy
    Possible research topics can include radiation treatment planning; radiation dose calculations; intensity-modulated radiotherapy; image-guided radiotherapy; biological basis of radiation therapy; analysis of treatment outcomes; and others.
    MPHY 42400 Research in Image-Guided Radiation Therapy
    Possible research topics include fundamental aspects of image guidance in radiation therapy planning and delivery, management of inter-treatment and intra-treatment patient motion, use of respiratory correlated CT, cone beam CT, kV/MV real-time imaging, and dynamic patient modeling for treatment planning. (Pelizzari, Wiersma)

    Other related documents:

    General Requirements
    GPMP Course Requirements
    Ph.D. Requirements
    Suggested Basic Course Sequence
    Suggested Elective Courses
    Examinations in the Program